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Abstract 

The research summarized in this report was concerned with the design of testbed and 
emulation tools suitable to assist in projecting, with reasonable accuracy, the expected 
performance of highly concurrent computing systems on large, complete applications. Such 
testbed and emulation tools are intended for the eventual use of those exploring new concurrent 
system architectures and organizations, either as users or as designers of such systems. While a 
range of alternatives was considered, a software-based set of hierarchical tools was chosen to 
provide maximum flexibility, to ease in moving to new computers as technology improves and to 
take advantage of the inherent reliabiliity and availability of commercially available computing 
systems. 
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1 Introduction 

Highly concurrent systems are expected to make a key contribution to the future of high- 
speed computation, both for numeric and non-numeric applications. Unfortunately, only a 
few highly concurrent systems exist and very few actual applications have been developed 
to run on such systems. Operating systems, languages, compilers and associated run-time 
environments are not yet mature. Therefore, those who are developing future systems and 
those who expect to be major users of future highly concurrent systems, have no experience 
with which to make reasonable projections of the expected performance and efficiency of 
real applications on proposed new concurrent system organizations. The research reported 
here, the design of testbed and emulation tools, is part of a larger project whose long- 
term objective is to project, with reasonable accuracy, the expected performance of highly 
concurrent computing systems on large, complete applications. 

For those interested in the research and development of future, highly concurrent sys- 
tems, the challenge is especially difficult. The discipline of the normal research cycle (see 
Figure l), is t o  begin with a hypothesis, and then design and conduct an appropriate ex- 
periment. The researcher would then observe and measure the results of the experiment. 
Finally, the experimental results would be evaluated and compared to the hypothesis be- 
fore starting the cycle over again. However, existing techniques to study the projected 
performance of large, complex applications on future, highly concurrent systems are te- 
dious, extremely time consuming and inadequate. Consider two important factors, the time 
to prepare an experknent and the time to perform that experiment. 

In computing systems, studies can be performed across a spectrum ranging from one 
extreme of detailed instruction-level simulation to another extreme of ‘cut t try’ where the 
whole system would actually be implemented. Simulation approaches are often chosen in 
order to reduce the time to evaluation of an experiment. However, as explained in Section 
2, such simulations can be as much as six orders of magnitude slower than the actual 
system being studied. Therefore, some other approach is needed in order to understand the 
projected performance of concurrent systems. 

including 
The performance of an application on a concurrent system is dependent on many factors 

e the structure of the application, 

e the language and compiler, 

the run-time environment, 

the operating system, and 

0 the concurrent computer system itself. 
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In order to develop a new approach to study of highly concurrent systems, this study 
first considered how each of these factors might impact the design of testbed and emulation 
tools. We then began 'the process which would lead to the design of a set of testbed and 
emulation tools. This report describes the research approach, the requirements for such a 
testbed, and the design approach chosen. 

2 Research Approach 

.When considering how to approach the performance projection of complex applications on 
highly concurrent systems, a number of alternatives can be considered: 

0 Build System and Try It 

This approach would have the highest fidelity in projecting performance since one 
would really know what would happen without any approximations. At the time of this 
study, this approach seemed most appropriate to the study of one particular system 
when considerable time and expense are already involved in the implementation of 
the system. This approach is of no help to those who are in the process of designing 
their system. 

0 Detailed Simulation 

The detailed simulation of a system is often proposed for two reasons: 

- speed of implementation 
- flexibility in making changes 

However, consider an example where the new system being studied must execute 
programs two orders of magnitude (1OOx) faster than the performance of existing ma- 
chines. In addition, assume that the memory capacity of the projected new machines 
are larger than existing systems. In this case, three multiplicative factors contribute 
to the usage cost of detailed simulation: 

- existing machine-100x slower than planned machine 
- simulation overhead-# simulation instructions lOOx more than the number of 

- memory system-existing system must emulate new memory, using bulk memory 

The result is that simulation speed will be lo6 times slower than the projected per- 
formance of the actual system. In other words, a job which would take one hour on 
the new system, would consume one million hours of simulation time (in excess of 117 
years). 

native instructions of the new machine during execution 

techniques resulting in a lOOx slow-down just from this factor. 

2 



0 Simulate Inner Loops 

Because of the amount of time required to simulate an entire application, separate 
study of the computationally expensive inner loops would seem to be a reasonable a p  
proach. However, if 95% of an application executes at full speed, say at 1.00 GFLOP, 
and if the remaining 5% executes at 10 MFLOP, then the overall effective rate of 
execution is only 170 MFLOP (0.17 GFLOP), a significant reduction. Study of inner 
loops will help understand the effectiveness of the utilization of the concurrent system 
during the execution of the loops. Projection of the overall performance of an applica- 
tion based on study of inner loops alone can lead to optimistic performance estimates. 
For example, in Figure 2, the overall performance of a multiprocessor (with varying 
numbers of 10 MFLOP processors) is shown as a function of FS, the fraction of code 
executed in serial. Note that even when the ‘non-kernel’ code is less than 1%, the 
system is unable to  utilize the potential cycles (FS=O). 

Develop a Mathematical Approximation 

The time required for execution of an application is directly related to the slowest 
part of the system (the system bottleneck) for a particular application. In practice, 
the bottleneck may change from time to time during execution of an application (such 
as a channel, main memory access, and Arithmetic and Logic Unit). A mathematical 
expression could be written which is a function of the peak performance of these bot- 
tleneck units and of a set of parameters which are applications based. Unfortunately, 
the development of such a formula is not straight-forward and either would need to 
be vsrified with another method, or, more likely, might be developed on the basis of 
previous simulation tests. 

0 Integrated Hierarchy of Models and Tools 

The most cost effective approach to projecting the performance of highly concurrent 
systems seems to be a hierarchy of models and tools. In such a hierarchy, the majority 
of the work can be accomplished at more general levels of models. Parameters a t  the 
general levels can then be verified through use of more detailed models and tools, but 
without requiring execution of all of an application at the most detailed level. 

Because the tools of interest in this study are intended to support the performance pro- 
jection of complex applications on concurrent computer systems, this study first spent some 
time becoming familiar with the environment in which the tools might be used and with 
the process by which applications come to be executed on concurrent computer systems. 
These preliminary efforts led to an understanding of requirements which were then used in 
approaching the design of the testbed and emulation tools. 
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Figure 1: Research Cycle 
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Figure 2: Available Computational Power as a Function of Serial Fraction in Code 
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APPLICATION 

Figure 3: Best Target for Application 

APPLICATION2 APPLICATION3 APPLICATION1 

t 

SYSTEM 

Figure 4: Application Challenges for a System 

3 Requirements 

3.1 Expected Usage 

The testbed and emulation tools are expected to attract two basic types of users; those 
interested in determining which of a number of concurrent systems would be most effective in 
executing a particular application of interest (Figure 3), and those interested in determining 
how well various applications would execute on a particular concurrent system (Figure 4). 

This research was concerned with applications as defined by a high-level language source 
code. Emphasis was placed on FORTRAN because of its common usage in applications 
already making significant use of parallel computational resources. A framework was estab- 
lished for understanding the application heritage of the source code representations. 

The systems considered were those best described as concurrent processors. That is, 
those systems which might be classified as MIMD (Multiple-Instruction, Multiple-Data) 
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stream systems. SIMD systems, such as vector or pipelined computers, were not considered. 

3.2 Accuracy of Results 

Since no capabilities to project performance of complex applications existed at the time of 
this work, the establishment of any bounds on a performance estimate would be a significant 
step forward. The accuracy of a performance estimate is a complex function of the ability 
to accurately estimate application needs (itself a function of input data in most cases), of 
the process of mapping the application onto the system through compilers, linkers, and 
loaders, of the management of the concurrent system by the operating system, and of the 
underlying concurrent system itself. Because of these complexities, our objective in making 
performance projections is to understand something about the accuracy of the projection. 
Definite bounds would be desirable, but estimates presented as probability distribution 
functions would also be useful. 

3.3 , Integrated Hierarchy of Tools 

ks mentioned in an earlier section, the time required to do a complete instruction-level 
simulation of a large, complex application can easily be more than six orders of magnitude 
slower than the time required by the real system, if it were available. While this level of 
detail would clearly give the most accurate results, if feasible, the testbed and emulation 
tools were considered at a number of levels of detail. High-level, general system functional 
models will be capable of full application/system models. By themselves, high-level models 
will necessarily have limited accuracy. More detailed model levels can be used judiciously 
in order to balance the benefit of the use of the detailed models with the time demands on 
the modeling resources. Selected questions raised at the system model level can be studied 
in more detail in lower level models in an integrated hierarchy of models. 

3,4 Level of Detail Expected 

As mentioned earlier, this testbed and emulation tool design project is part of a long-term 
research program to learn how to project the performance of complex applications on highly 
concurrent machines. The long-term project expects to either: 

0 make a performance projection within some known bounds, or 

0 estimate performance with a probability distribution function 

Because of the emphasis on performance projection of a whole application, the focus 
of this design project is to provide tools to study those portions of a system which have 
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the most significant effects on performance. Specific details of application execution are 
generally not needed in order to meet the overall objectives. 

4 Background Studies 

Before the design of the testbed and emulation tools could be considered, a review of 
available technology and of possible general approaches to the design was conducted. The 
technologies reviewed included existing tools, specialized hardware, and software. The 
process involved in application execution was reviewed in order to better understand the 
relationships between different levels of implementation. 

4.1 Application Execution Process 

Before an application can be executed, it must progress successfully through a number of 
stages of development, some of which are automated, until a representation of the applica- 
tion exists in a form which can be executed on the system. As an application passes from 
one level to the next during development, more and more information needed for execu- 
tion is bound to the application description. If this application mapping process is clearly 
understood, then the testbed and emulation tools may be able to work at more general, 
less constrained levels with known relationships to  actual execution environments. Figure 5 
shows the varioua level of detail, which are involved in the application development and 
execution process. 

Consider the process of mapping the application onto an execution environment first. 
The initial approach to a problem is usually to describe it in English. A system analyst then 
studies the problem and designs an algorithm to solve the problem. A programmer codes 
the algorithm into some high level language. From this point on, most of the mapping 
process is automated, first through the use of a compiler which compiles the high level 
language into an intermediate language. Code optimization typically takes place at this 
level. The intermediate language code is then translated, by the code generators, to the 
machine code. The machine code is usually interpreted by a microprogram stored in the 
control store of the host machine. 

Similarly, hardware can be represented by many levels of abstraction. At the most 
detailed level, the hardware can be defined in terms of register transfers and basic machine 
instructions. That hardware, together with the microcode stored in its control memory, 
is a virtual machine which executes assembly language code instructions. That assembly 
code virtual machine, together with the operating system which manages 1 /0  operations, 
memory management, and process scheduling, is an intermediate language virtual machine. 
The intermediate language virtual machine hides a lot of specific details unique to the basic 
hardware machine. At the highest level, the algorithm designer assumes the existence of a 
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1 High Level Language Machine 

Intermediate 
Language 

Intermediate Language Machine 1 
Machine 

~ 4’ Language 
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Modeling 

Instruction Level Simulation 

Figure 5: Levels of Application Implementation Detail 

high-level language virtual machine which includes the capabilities of optimization of the 
original high-level language. 

The execution of software on some hardware can be modeled a t  any of these various 
levels. At the lowest level, the behavior of the registers and basic functional components 
while executing the microprograms of the underlying machine could be simulated. This 
level would, obviously, provide the most detailed information. Simulation a t  the next more 
general level, known as instruction level simulation, is not concerned with all the details 
of data movements between registers. The execution model has been abstracted such that 
the underlying details are hidden and the results of the underlying details are represented 
in (sometimes an approximate way) the timing characteristics of the machine-language 
instruction set being simulated. 

In a similar manner, intermediate language or high-level language interpretation can 
be considered. These execution models must also represent the effects of operating system 
functions, run-time environments, compiler optimization, and many more details. These 
more general forms of computational models do not require as much computational effort 
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to get results, but they hide a significant amount of information about the detailed execution 
process. 

If modeling and emulation tools are available at each of the levels of this hierarchy, 
execution assumptions at one level can be validated at the next. For example, a floating 
point ADD instruction can be simulated in detail a t  the lowest level to determine the 
instruction execution time. This timing information can then be used by, higher levels in 
the hierarchy of tools. 

Maintenance of the consistency of information (such as instruction timing) between vari- 
ous levels is very important. Unfortunately, while some simple one-to-one relationships hold 
between levels in the hierarchy of models, many practical system effects require considera- 
tion of more complicated (sometimes nondeterministic) functions describe the relationships 
between information in models a t  different levels of abstraction. Operating systems, op- 
timizing compilers, and variable delays in memory systems and interconnection networks 
are some of the complicating factors. Some of these effects will need to be represented as 
probability distribution functions at the higher levels in the hierarchy. 

4.2 Application Representation and Mapping 

One part of the execution process clearly involves mapping an application through the 
various levels of instantiation to whatever level is being used for performance analysis. In 
the background studies, two problems were encountered: 

0 the semantics of the various levels of application instantiation were ambiguous, and 

0 each level of application instantiation is represented, typically, by a different language. 

When trying to discuss these issues, the lack of a clear definition for the various levels of 
abstraction became a problem. Without a clear definition for each level, the identification of 
any added constraints on the inherent parallelism of a problem as the problem was mapped 
fr im the original problem domain to the domain of an executable computer program became 
very difficult. 

The following terminology was developed in order to describe the stages in the solution 
of a problem, from its original statement through creation of an executable algorithm. An 
example is used to demonstrate the use of this technology. The example is the determination 
of the temperature distribution of a conducting surface with various constant-temperature 
and insulation constraints. 

0 Problem Level 0 A problem level 0 specification is the highest-level specification of 
a problem. The PLO specification describes the problem, and contains the knowledge 
about the problem necessary for its solution. 
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Problem Level 0 

What is the steady-state temperature distribution in the following conducting 
solid? The upper surfaces are maintained at temperature Tu, the IOWW surface 
at TI, and the sides are semi-insulated. (The physical differential equations 
are implicitly included at this level. 

0 TI C 

Figure 6: Problem Level 0 

For the temperature distribution example (see Figure 6), a PLO specification would 
consist of a description of the conducting solid and its surfaces, and would pose the 
question as to what is the steady-state temperature distribution. The knowledge 
about the physical behavior of the system is included in the form of differential heat 
equations. 

0 Problem Level 1 A problem level 1 specification is complete enough that an al- 
gorithm could be generated from this specification without further knowledge of the 
problem. This PL1 specification introduces the model used in the solution, and thus 
is the first level where only an approximation to the actual problem may be found. 

For the temperature distribution example, a problem level 1 specification describes 
the discrete form of the problem (see Figure 7). This discrete form includes the mesh, 
the boundary conditions, and the difference equations used at each point of the mesh. 

0 Problem Level 2 A problem level 2 specification of the problem includes the PL1 
specification, but also includes algorithmic information. The algorithmic information 
specifies the execution of the model. 

For the temperature distribution example (see Figure 8), this algorithmic information 
specifies the time-coincident, repetitive application of the difference equations over all 
points in the mesh, and the termination conditions. 

0 Algorithm Level 1 An algorithm level 1 specification is a representation of the 
algorithm to such detail that an execution of the representation would provide the 
algorithm’s solution to the problem. The specification is unconstrained by factors not 
inherent in the PL2 specification, and represents the detailed algorithm at its most 
pure level. This AL1 specification is similar in content to the PL2 specification, but 
typically PL2 will be natural-language, and AL1 will be a more rigidly defined form 
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Problem Level 1 

Divide the solid into an array of mesh points. The finite difference forms of the 
heat equation and boundary conditions relate the temperature at the mesh points 
for the given problem by the following relationships: 

 ti,^^ \ 
JB 

JA - 
1 -  

TI f ' *  

JB 

TIC,l 
'C\ 

Ti,j = Tu 

for 1 s i s l C  and 

Ti,j = TL 

for j= 1 

<JB 

Figure 7: P r o b l e m  Leve l  1 
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Problem Level 2 

Over the mesh given in PL1, an initial temperature distribution is assigned 
and is then corrected by repetitive application of equations 1 through 5 
from the PL1 description. The program is terminated when either the 
temperature at each point has been correct Nmax times or when the 
absolute value of successive temperature changes is less than E at every 
point. 

For tests, use Nmax = 60, E = 0.1 0, and 10 mesh points in each direction. 

Figure 8: Problem Level 2 

(e.g. Petri net, Holt diagram, etc.). The execution of any AL1 specification must be, 
by definition, equivalent to the execution of any other representation. 

For the temperature distribution problem, an AL1 specification is a flow chart, or 
Holt diagram, or Petri net, etc., which specifies a precise execution of the algorithm, 
but does not constrain the algorithm (see Figure 9). 

0 Algorithm Level 2 An algorithm level 2 specification is a constrained AL1 specifi- 
cation. An A L 2  specification has the same result potential as the AL1 specification, 
but may have artificially introduced constraints in either its representational method 
(e.g. FORTRAN), or its representational goals (e.g., coding for efficient execution on 
a specific machine). 

For the temperature distribution example, the AL2 specification (see the example in 
Figure 10) is a FORTRAN, or Pascal, etc., program which has the same algorithmic 
features of the AL1 specification, but contains extra constraints such as the serializa- 
tion of the calculations in a FORTRAN program. 

The level descriptions above describe the transformation of a problem from its conception 
to its realization in an executable form. The definition of these levels was valuable in the 
analysis of where the application-related constraints occur. However, since the objective 
of the research was to proceed from high-level language source, further definition of these 
levels was not required a t  this time. 

The relationships between the levels beginning with the high-level language level are 
important. Given an understanding of how an application maps through the various lev- 
els to the detailed register-transfer (RT) level, inverse mappings may be possible to relate 
performance parameters at higher levels to the RT level. Unfortunately, each of the lev- 
els, beginning with the high-level language level (Algorithm Level 2), are represented in 
different formal languages. These languages are so varied that important functional rela- 
tionships between the levels are often obscured by differences in the notation used. As part 
of the Background Studies, alternative languages and other forms of representation were 
considered in order to determine whether a common form could be identified for use by all 

12 



The following SASL program represents the algorithm. 

temp 0 initial 
WHERE 

temp time T = time > Nmax -> T : [:(time=",time,%)] 
smallchange T T' -> T' : ["(time=",time+l ,%)I 

temp (time + 1) T' 
WHERE 
T'= nextT 
smallchange T1 T2 

= all [(Tl i j - T2 i j) e epsilon; 
j e- l..JB; i c- l..IC] 

next T = [[f a b; b e- l..JB]; a e- l..IC] 
WHERE 

f i j = equationl i j 

equation2 I j 

equation3 i j 

equation4 i j 
-> Tupper 
equation5 1 j 
-> Tlower 

-> (T i (j-1) + T 1 (j+l) + T (i-1) j + T (i+l) j)/4 

-> (T i (j+l) + T i (j-1) + 2 T (i-1) j)/4 

-> (T i (j-1) + T i (j+l) + 2 T (1+1) j)/4 

equationl i j 
= 2 e= i and i e= (IC-1) and 2c= j and j e= (JB-1) 

equation2 I j 
= 2 c= j and j c= (JB-1) and I = IC 

equation3 i j 
= i = 1 and 2 e= j and j <= JB 
equation4 i j 
= 1 e= i and i c= IC and j = JB or i = 1 and JA <= j and j c JB 
equation 5 i j . 
= j = 1  

Nmax = 60 
epsilon = 0.10 
IC = 10 
JB = 10 
Tupper = 100 
Tlower = 0 
init ial  = [[ 0,0,0,0,0,0,0,0,0,0], 

[ 0,0,0,0,0,0,0,0,0,01, 
0,0,0,0,0,0,0,0,0,01, 

[ 0,0,0,0,0,0,0,~,0,01, 
[ 0,0,0,0,0,0,0,0,0,01, 
[ 0,0,0,0,0,0,0,0,0,01, 
[ 0,0,0,0,0,0,0,0,0,01, 
[ o,o,o,o,o,o,o,o,o,o1, 
[ 0,0,0,0,0,0,0,0,0,01, 
[ O , O , ~ , ~ , ~ , ~ , ~ , ~ , ~ , ~ I I  

Figure 9: Algorithm Level 1 (in SASL] 
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10 

11 

100 

101 

99 
95 

150 

35 

160 

DIMENSION IT( 10.1 0). R(10.10). T(10.10) 
READ (5.10) TU.TLIC.JB.EPS.N 

FORMAT(1 X.F5.2.1 X.F5.2.1 X.12.1 X,l2,1X.F4.3,1 XJ2) 
WRlTE(6,ll) T L  N. IC. JB. EPS. N 

FORMAT(' TG'.F7.2.' TU-'.F7.2.' IC-'.13.' JBm'J3.' EPS-', 
1 F6.3,' N-'.13) 

ICOWBR 
Do 100 1-1,IC 
Do looc l . l coL  
T( I .J)-TL 
a"x 
JA=lCOL+l 
Do 101 I-1.IC 
DO 101 JJA,JB 
T( I .J)-TU 
a"x 
Do 99 1-1 .IC 
Do 99 J-1 JB 
R(I.J)-T(I.J) 
a"x 
FORMATC '.6R2) 
DO899LOOP-1N 
ICE - IC1 
Do 140 1-1 .ICE 
J-1 
T(1.J)-TL 
IF(I.€Ql)GOTO35 

Do 150 J d  JBE 
T(I.J)-T(l.J-l)+T(I J+l)+T(I-l .J)+T(I+l .J))/4 
cfxlN€ 
T(I.JB)-TU 
GOT0140 
DO 160 J-2.JA 
T(I.J)-CT(I J-l)+T(I,JJ-1)+27(1+1.J))/4 
(XEIIFLE 
DO 165 JJAJE 
T(1.J)-TU 

165 COMNE 
140 cfxlN€ 

I-IC 
J-I 
f(l;J)-TL 
DO 180 JSJA 
T(I.J)-CT(I.J+l)+T(I J-1)+27(1-1 .J))/4 

DO 199 b1.IC 
00 199 J-1.JB 
IF(ABS(T(IJ)-R(IJ)).GE.EPS) GO TO 77 

199 m 
GOTo#x) 

n DOXX) 1-1.IC 
W 200 J-1 .JB 
R(I J)-T(I J )  

200 m 
899 CmllUJE 

9 o o c o M N E  

902 FWMATr NUMBER OF IlERAllCNs TAKDJ ', 14) 

180 CCNlFLE 

WRlTTE(6.901) 
901  FORMAT^ -DID NOT BIT ON THE EPSILON. mwnm BCEEDED-, 

Wm(6.902) ux)p 

DO M 1  1-1 .IC 
Do 201 J-1 .JB 
lT(l,J)-T(l,J)V 00+.5 
T(1.J)-lT(l,J)/lOO. 

WRITE(6.15)((T(l,J),l-l .IC).J-l .JB) 

muw 
eQ 

201 cc"x 

1 5 FORMAT( 1 X.6iT2) 

Figure 10: Algorithm Level 2 [in FORTRAN] 
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Figure 11: A Simple Petri Net 

levels in the hierarchy. Some of the alternatives considered as a common, level-independent 
representation form were: 

0 Petri Nets 

0 Role-Activity Diagrams 

0 SASL 

Petri Nets are graphical representations of execution. A Petri Net has two types of nodes: 
place and transition. Edges in a Petri Net connect only nodes of opposite type. In Figure 11, 
the places are represented by circles and the transitions are represented by horizontal lines. 

In addition, a notion of activation is used to understand the evaluation sequence in a 
Petri Net. When a place holds a value, a token is shown in the place (see top circle in the 
figure for example). When every input place of a transition has at least one token, the tran- 
sition is enabled to  fire. The process of firing a transition, removes a token from each input 
place and adds a token to each output place of the firing transition. Petri Nets are quite 
general and are a powerful notion in modeling parallel structures and asynchronous activ- 
ities. However, they become quite complex when representing execution of a complicated 
application executing on a concurrent system. 

Petri Nets can be analyzed with queueing models. In this case, a transition would 
represent a service station in the queueing model. A place would represent a queue. A 
token would represent a task. The number of tokens in a place would be the queue length. 
The transition firing time would be the service time in the queueing model. 

Petri Nets could also be analyzed as a Markov process since the next state.depends only 
on the previous state. Because of a property of conservation of tokens at a place within Petri 
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Uni t  k-1 T 
t 

Output Register k-1 'i 
Input Register k + 

Unit k Q 
Output Register k 'i e5 Input Register k+l  

Figure 12: Pipelined Asynchronous Control Unit 

Nets, notions such as bottleneck, peakload, max utilization, waiting time, queue length, etc. 
are straightforward to study. 

Petri Nets show both control and data flow, and as such relate well to notions of sim- 
ulation. The interpretation of token, transition, and place are flexible. In addition, Petri 
Nets themselves are hierarchical (as an example below demonstrates). 

Hardware Modeling As an example, a simple asynchronous control unit for a pipelined 
computer could be represented by a Petri Net Model. Figure 12 shows the general organiza- 
tion of the hardware with various functional units, each of which has an input register and 
an output register. Figure 13 shows the corresponding Petri Net model of this asynchronous 
control unit. Notice the tokens residing simultaneously in various places in the net. 

Software Modeling As a second example, consider the temperature distribution example 
given earlier. Recall that the overall problem was shown in Figure 6 and that a Fortran 
version of it was shown in Figure 10. Figure 14 shows the basic blocks in that Fortran 
program. Figure 15 shows the Petri Net representation of that program flow. In order 
to show more detail, a portion of the representation shown in Figure 15 is expanded in 
Figure 16, thus demonstrating the potential of hierarchy within this sort of a model. 
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Output 01 k-1 full 
Output Of k-1 
empty 

Input of k empty input of k full 

Output of k full 0 Output of k empty 

Input of k+ l  empty 
/ 0 CODY k 10 k+ l  

input of k+ l  full 

Figure 13: Petri Net Model of Asynchronous Control Unit 

17 



Initialization 
BB 1 

. 

4 
- I  

aB2 Outplit of Results 

LCP Evaluation of Mesh 

Exit, 
/ 

Exit // 
Iteration > N maw 

Change -< E 

Figure 14: Basic Blocks of Temperature Distribution Problem 

4.2.1 Role-Activity Diagrams 

Role-Activity diagrams are Petri nets which show the organization of systems. The method 
used was invented by Anatol Holt. Roles are sequences of activities in which actors partici- 
pate when they are playing that role. An activity often requires a number of actors in their 
roles for its realization. 

Any given role is played by, at most, one actor at a time, although different actors may 
play the role at different times. Also, an actor, playing a role, may participate in only one 
activity at a time. For an activity to occur, all roles associated with that activity must have 
actors taking part. Thus, each role associated with that activity is a resource necessary for 
the realization of that activity. 

Role-Activity diagrams, represented as role-activity nets, are a method of specifying use 
of resources in a system. For computer algorithms, the resources compute the values in the 
solution of the problem. Thus, Role-Activity diagrams specify the interaction of values in 
the algorithm, as well as the interaction between resources. 

A vertical strip in a Role-Activity diagram represents the succession of roles taken on by 
an actor (a resource) over time. Time is assumed to progress down the page. Activities re- 
quiring multiple actors are represented by horizontally-connected squares under each actor 
required. Figure 17 is an abbreviated directory which can be used to interpret the con- 
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6 
Figure 16: Petri Net Expansion of BB1 

. 

stituents of a Role-Activity diagram. Figure 18 shows a portion of a Role-. xtivity diagram. 
The figure shows the update of a cell within the temperature distribution problem. 

Role-Activity diagrams are very general, although because of the explicit representation 
of time, they are more constrained than Petri Nets. The graph structure has few artificial 
restrictions. However, these diagrams are not a perfect representation for this project. 
Generalizations such as looping and recursion are not handled directly in Holt diagrams, 
and are often difficult to create and/or spot. Because the production of each value must 
be represented by one role, a program with a lot of values (such as large arrays) would 
take up a lot of diagram space. Not only is this kind of graph difficult to draw, it is 
also difficult to look at because of its large size. Large graphs are also tedious to change. 
Many problems, especially in simulation and modeling, have very regular characteristics. 
In these problems, the Role-Activity diagrams have similar regularity. We have identified 
the production of Role-Activity diagrams from a higher-level specification, the ‘generative 
problem.’ Some study of this has revealed some relatively simple extensions to Role-Activity 
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Figure 18: Portion of Role-Activity Diagram-Temperature Distribution Problem 

diagrams which provide the desired characteristics. A major advantage of Role-Activity 
diagrams for these applications is the ease and visibility with which artificial constraints, 
such as those imposed by certain compilers, or languages, may have been added to the AL1 
representation. In addition, even constraints added by the machine (such as queueing at  
memory) can be easily represented with Role-Activity diagrams. 

Role-Activity diagrams can easily represent the execution of a program on a concurrent 
system since the various system execution resources are the actors and the computations 
to be performed are activities. Communications between actors also are explicitly shown. 
However, these diagrams become quite complex when trying to represent dynamic resource 
allocation. 

4.2.2 SASL Programs 

SASL is a language developed by David Turner at  the University of St. Andrews (hence 
SASL: St. Andrews Static Language). SASL is an applicative language, where the program 
is an expression consisting solely of the application of functions to  arguments. Assignment is 
impossible; within a context, a variable's value never varies. Substitutions and reductions in 
the representation may occur, but the value stays the same. Parallelism in SASL is possible 
because there are no side effects (there is not assignment). So, 4+1 is always equal to 3+2 
in SASL; the objects are different, but the value is the same. 

. 
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SASL’s only data structures are lists, which may be arbitrarily complex. The elements 
of these lists need not be all of the same type. Lists may also be of infinite length, as long 
as all of the elements are not evaluated. For example, 

ones = C11 ++ ones 

is an infinite list of 1s. 

A function is also a value in SASL, and all functions have only one argument. By a 
procedure known as Currying, a function of one argument returns a function which takes 
another argument, etc., so that many arguments can be used. For example, 

PLUS 3 4 is really ((PLUS 3) 41, 

where the function (PLUS 3) takes the argument 4. 

Functions in SASL are non-strict. That is, they use lazy evaluation of their arguments 
so that a function can still have a defined value if not all of its arguments are defined. 

SASL programs are expressively complete, but it is sometimes difficult to think of the 
proper way to express a concept such that no restriction of the AL1 parallelism occurs. 
Certain concepts cannot even be stated in SASL. For example, non-deterministic problems 
such as chaotic-relaxation algorithms cannot be represented. Some extension to SASL 
would have to be created in order to represent such a concept. Despite these drawbacks, 
SASL would probably be a good AL1 representation tool, especially if some form of state 
representation could be added. (The temperature distribution example given earlier used 
SASL in just this way-see Figure 9.) Problem representation in SASL is lucid and concise. 
However, there are no inherent means of inserting artificial constraints, so that un-adorned 
SASL cannot be used as a representation in the testbed a t  both AL1 and AL2 levels. 

4.3 Survey of Concurrent Architectures 

As part of the Background Study, the potential range of machines which might be studied 
with the planned Testbed and Emulation Tools was studied by surveying a wide range of 
existing machines. These machines can be characterized from different viewpoints: 

e models of computation, 

e interconnection network, 

e processing element, 

e memory system, and 

e application 
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The purpose of this survey was to understand the breadth of each of these viewpoints, at 
least with current architectures. 

4.3.1 Taxonomy of Concurrent Architectures 

There are literally hundreds of concurrent architectures proposed and designed in the last 
decade. These architectures are so different that the usual classifications as SIMD and 
MIMD [Fly 721 machines are not sufficient. 

New taxonomy schemes are developed by many researchers in order to catagorize these 
different architectures into different classes. One particular taxonomy as reported by Haynes 
and others in [HLS 821 divided the wide spectrum of concurrent architectures into six classes: 

1. Multiple special-purpose functional units 

2. Associative processors 

3. Array processors 

4. Data flow processors 

5 .  Functional programming language processors 

6. Multiple CPUs 

Machines with multiple special-purpose functional units are usually designed to perform 
some specific tasks efficiently. One example is the systolic arrays which will be described 
in more detail in the next section. Computation intensive problems, in which the kernels 
are based on a number of basic mathematical operations, have found great success in these 
structures. Matrix multiplication, solution of linear systems, and FFT are some examples. 

Associative processors are those machines which utilize an associative memory. In asso- 
ciative memory, one bit of any memory word is available on one access, thus it is possible 
to search the whole memory simultaneously for specified contents by iteration on bit slices. 
This organization also allows memory words to be addressed by their contents instead of 
their addresses. One example of associative processors that we will describe in the next 
section is STARAN designed and built by Goodyear Aerospace Corporation. 

Array processors are machines with multiple arithmetic units operating in lockstep and 
performing the same operation on different data. This is the most common and popular 
type of concurrent architecture available on the market. They are particularly suitable to 
problems that involve a large proportion of array data types. Five examples will be studied 
in the next section: Illiac IV, BSP, MPP, CHiP, and NON-VON. 
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Data flow computers are very different from the conventional von Neumann architectures 
in which a program counter is used to schedule the next instruction to be executed. An 
instruction in a data flow computer is ready for execution when its operands arrive. As 
a consequence of this data-activated property, a very high level of concurrency can be 
exploited. The Data Driven Signal Processor (DDSP) will be given as an example of this 
type of concurrent architecture. 

Functional programming (FP) language machine or reduction machine has gained con- 
siderable interest recently. The main advantage of FP  is that when algorithms are described 
in such applicative languages, much parallelism can occur automatically-with no analy- 
sis of program structure and without explicit programmer involvement with parallelism. 
SERFRE will be studied as an example in the next section. 

Multiple processors belong to the class normally called MIMD. They are more flexible 
than the classes described above; however, their control is much more complex. The inter- 
connection network, which connects the processors, usually forms a crucial part both in the 
design and operation of each machine. 

Since the architectures in this class are so diverse that we are going to look at  nine 
different machines in the next section: Cedar, FMP, S-1, Cm*, HEP, Empress, MP/C, 
Ultra, and TRAC. 

4.3.2 Architectures Studied 

In this section, we will describe 18 different machines, this is by no means a complete 
survey of all concurrent architectures, we are just trying to cover as wide a spectrum as 
possible. Using the taxonomy described in the previous section as a guideline, we have 
chosen machines that belong to these six different classes. Since array processors (SIMD) 
and multiple processors (MIMD) have received most attention, most machines that have 
been chosen belong to these two classes. In each subsection that follows, we will try to 
describe the most significant parts of each machine’s architecture. 

Systolic Array The systolic architectural concept [Kun 821 was developed by Kung and 
associates at Carnegie-Melon University, and is a general methodology for mapping high- 
level computations into hardware structure. A systolic system consists of a set of intercon- 
nected cells, each capable of performing some simple operation. Information in a systolic 
system flows between cells in a pipelined fashion, and communication with the outside world 
occurs only at the boundary cells. 

In Figure 19, the hex-connected systolic array can be used to multiply two N x N band 
matrices of bandwidths W1 and W p ,  each of which performs the inner product operation 
C t C + A * B. The entire multiplication requires only 3N + Min(W 1, W,) time units. 
As the matrices shift into the array, they always move in exactly the same direction and 
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Figure 19: Hex-connected systolic array 

require no control. Each cell performs one computation at each step, and input and output 
are overlapped with computation. For each 1/0 access, there are .multiple computations 
performed on the data item, thus execution of compute-bound problems can be speeded 
up without increasing the 1/0 requirements. This is a very significant improvement over 
the classical von Neumann architecture in which the memory access time is associated with 
each operation of the data item. 

For specialized algorithms that can be implemented by the systolic array, they are fast, 
hardware efficient, and require no software control in communication and synchronization. 
The major problem with a systolic array is still in its 1/0 barrier. Implementation of the 
systolic array on a VLSI chip is limited by the number of pins, or 1/0 terminal, available 
on a single chip. 

STARAN STARAN [Bat 741, depicted in Figure 20, is the first bit-serial parallel process- 
ing system. It was developed by Goodyear Aerospace Corporation in 1972. It consists of up 

26 



,_ __._ .  _.--. -.--. 
.4\\oc1aii\c 

module 0 

! : P I 0  PI0 
8 array 

Figure 20: The STARAN System Architecture 

- 
, 

27 

i Typical i 
user i : 

i equipment i 

; P I 0  
! 
I *Computers I 
j *peripherals i 
i *Displays i 
: .Sensors j 

: EXF 

i 810 

I 
: DMA 

L _  ._______.._---- d 

Custom U p 1 0 3 1  . 
additional : interface 

unit modules 

PI0  A5tociative Control 
cignalc * arrav - 

module n 

- _ _ _ _ _ _  ~ _________.____.____________ ~ _ _ _ _ _ _ _ , _ - -  ~ ---. 
External function logic 

I 
1 '  

Program Associatibe : 
pager conrroi I 
logic loplc ; 

1 

! 

BIO i 
Memorv port 

logic 
DMA ; . 

Associative processor 
! control memory 

L ___.______. ~ ______.___. ~ ~ _.__ ___... - J  

Control system 



to 32 associative array modules, each contains 256 processing elements, a 256word 256-bit 
multidimensional access (MDA) memory, a flip network, and a selector. Each processing 
element operates serially bit by bit on the data in all MDA memory words. The MDA 
memory can be addressed in either bit-slice (one bit of all 256 words) or word-slice (all bits 
of one word). 

Thus, data can be input and output in the usual word by word fashion while processing 
can be done in bit-serial fashion. The flip network is used for data shifting or manipulation 
to enable parallel search, arithmetic or logical operations among words of the MDA memory. 

STARAN has high-speed input-output capabilities and the ability to interface easily 
with conventional computers which handle the tasks that must be processed in a single 
sequential data stream. The main application areas of STARAN are in signal processing 
and database. 

Illiac IV Illiac IV [BDM 721 was developed at the University of Illinois in the 1960s and 
fabricated by the Burroughs Corporation in 1972. The original design had 4 quadrants of 64 
mesh-connected processing elements under the supervision of 4 control units. Due to cost 
escalation and schedule delays, only 1 quadrant (see Figure 21) was ever built. The speed of 
the 6PPE quadrant is approximately 200 million operations per second. The control unit 
controls and decodes the instruction stream and broadcasts instructions and common data 
to all PES. It is also a scalar processor by itself besides having the ability to control the 
PE-array. 

Each PE is a powerful computing unit, and has a 64bi t  wide routing path to  its four 
neighbors. The main application area is in scientific applications like numerical weather 
forecasting. and nuclear engineering research. 

BSP The Burroughs Scientific Processor (BSP) [KS 821 (see Figure 22) was an attempt by 
Burroughs Corporation to improve on the Illiac IV design. I t  has 16 arithmetic elements and 
17 (prime number) memory modules interconnected by two alignment networks: full cross- 
bar switch with broadcasting and conflict resolving ability. This permits general-purpose 
interconnectivity between the arithmetic array and the memory-storage modules. It is the 
combined function of the memory-storage scheme and the alignment networks that supports 
the conflict-free capabilities of the parallel memory. The parallel processors perform vector 
computation with a clock period of 160 ns. The control processor provides the supervisory 
interface to the system manager in addition to controlling the parallel processor. The scalar 
processor processes all operating system and user-program instructions which are stored in 
the control memory. It executes some serial or scalar portions of user programs with a clock 
rate of 12 MHz and is able to perform up to 1.5 megaflops. The BSP is capable of executing 
up to 50 megaflops and is used mainly for scientific applications. 
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MPP Like STARAN, Massively Parallel Processor (MPP) [Bat 821 was also designed and 
built by Goodyear Aerospace Corporation starting from 1979 to be a high speed satellite 
image processing system. The processor, shown in Figure 23, has 16,896 bit-serial process- 
ing elements (PE’s) arranged in a 128-row by 132-row (4 redundant rows for fault tolerance) 
rectangular array with strictly nearest-neighbor connections. The edge connection is pro- 
grammable so that the array may look like a plane, a cylinder, a torus, a spiral, or a linear 
string. On 32-bit floating-point data, addition occurs at 430 MOPS and multiplication 
a t  216 MOPS. The staging memory in the input-output path of the array unit acts both 
as a buffer between the array unit and the outside world, and also to reformat data so 
both the array unit (bit-serial) and the outside world (word-serial) can transfer data in 
the optimum format. MPP is a SIMD machine and all PE’s perform the same instruction 
on every machine clock cycle. Although built for satellite imagery processing, preliminary 
application studies indicate that MPP can also support general image processing, weather 
simulation, aerodynamic studies, radar processing, reactor diffusion analysis, and computer 
image generation. 

CHiP The CHiP computer, shown in Figure 24, [Sny 821 is a family of architectures each 
constructed from three components: a collection of homogeneous microprocessors (28 to 
216), a switch lattice, and a controller. The microprocessors are not directly connected to 
each other, but rather are connected at regular intervals to the switch lattice. Each switch 
in the lattice contains local memory capable of storing several configuration settings and 
thus be changed dynamically during program execution: mesh for dynamic programming; 
hexagonally connected mesh for LU decomposition; torus for transitive closure; tree for 
sorting; double tree for searching; etc.. The perimeter switches are connected to exter- 
nal storage devices. The controller is responsible for loading the switch memory. CHiP 
processing begins with the controller broadcasting a command to all switches to invoke a 
particular configuration setting. Individual microprocessors then synchronously execute the 
instructions stored in their local memory. 

By integrating programmable switches with the processing elements, the CHiP computer 
achieves a polymorphism of interconnection structure that also preserves locality, thus al- 
lowing algorithms that exploit different interconnection patterns to be used in the same 
program. CHiP can be viewed as a configurable systolic array: it has all the advantages of 
the systolic array while it is still general enough to embed different interconnection patterns 
in its lattice. 

NON-VON The NON-VON architecture, shown in Figure 25, consists of two parts: 
primary processing subsystem and secondary processing subsystem. The primary processing 
subsystem is organized as a binary tree of small processing elements (SPEs) which have no 
stored program and can only execute instructions sent by its ancestor nodes. The SPEs in 
the first few levels of the tree are each connected to a large processing element (LPE) which 
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Figure 24: CHiP lattice. PES shown as squares, switches as circles. 

has locally stored program and may operate independently. Thus, NON-VON can act as a 
single SIMD machine with the node at the root being the ancestor of all the nodes below 
it, or as a multiple SIMD machine with each subtree controlled by a node connected to an 
LPE. The LPE connected to the root is called the control processor and is also connected 
to the host processor. 

The secondary processing subsystem consists of 64 to 256 disk-drives each connected via 
an intelligent head unit to an LPE. These intelligent head units perform certain computa- 
tionally simple operations (e.g. selection) on the fly, thus added to the processing power of 
the whole system. 

NON-VON is designed to be used mainly in the areas of relational database, sorting 
and vision. 

DDSP The Data Driven Signal Processor (DDSP) [HNI 821 is being developed by ESL 
Incorporated to be a programmable, modular, high-speed data flow computer primarily for 
signal processing applications. A block diagram is shown in Figure 26. Its configuration 
ranges from one to 32 processors with a maximum performance of 71 MFLOPS. DDSP is de- 
signed with a high order language (Data Driven Programming Language, or DDPL) capable 
of generating efficient machine code, and follows the single assignment rule. It implements 
a dynamic tagged data flow model where tokens are tagged with a label field determined at 
run-time. The processors in a DDSP system are closely coupled through an interconnection 
network. A processor consists of an input queue for temporarily saving tokens, a matching 
store (associative memory) for associating pairs of tokens, and a processing element for per- 
forming high speed integer and floating point computations (2.2 MFLOPS). Because of the 
nature of signal processing computations, the interconnection network is essentially a linear 
arrangement of processors with wrap-around from the last pair of processors to the first 
pair, and augmented by a three level tree used for long distance communication. Besides 
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signal processing, DDSP can also be used in fields of sonar and image processing. 

L PE 

SPE 

SERFRE SERFRE [Vi1 821 is a multi-processor command-driven (string reduction) ma- 
chine and can directly executes a FP (Functional Programming) language, trying to have 
subprograms executed on different processors. It is a dynamic loosely-coupled system us- 
ing direct communication with storage of messages. Figure 27 shows the architecture of a 
possible, single-user implementation of SERFRE. Figure 28 shows the structure of a mod- 
ule. The 1/0 processor controls the memory system as well as the initiation of a program 
evaluation and returning of the result to the user. The C-processors have their own local 
memory to store data and function definitions. A C-processor consists of a register for the 
return address, a stack for the program, registers for the data, and a reduction engine. 
When asked to evaluate a function involving concurrency, it will try to call for other non- 
busy C-processors to execute the subprograms, if none is available, it will evaluate them 
sequentially. 

Cedar The objective of the Cedar project [GKL 831 at University of Illinois is to inves- 
tigate ways to accommodate several thousands of high performance processors to deliver 
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several gigaflops. I t  will make use of the VLSI technology to build powerful VLSI proces- 
sors, for instance, 32-bit, 2.5 MFLOPS. The uniqueness of this architecture is the concept 
of Macro Dataflow which combines the control mechanisms of data flow architecture and 
storage management of the von Neumann machine. A program is viewed as a flow graph 
of nodes. Each node is either computational (CPF) or control (CTF). The Global Control 
Unit executes CTF while the processor clusters execute CPF. A processor cluster consists 
of a number of processors and local memory modules working cooperatively to execute a 
CPF. When a CPF is finished, the cluster control unit will signal the Global Control Unit 
so that other nodes depending on this CPF can be scheduled to be executed. Besides local 
memory, processor clusters can also access the global memory through the global network, 
an Omega network. Figure 29 shows a block diagram of the structure of Cedar. 

F M P  The Flow Model Processor (FMP) [Lun 851 was the result of a series of design 
studies conducted from 1975 through 1982, sponsored both by Burroughs Corporation and 
by the NASA Ames Research Center. Its objective was to sustain throughput in excess 
of 1 GFLOP, and was intended to support large scientific problems especially modeling 
problems in computational aerodynamics. It was designed to support standard FORTRAN, 
with extended feature like DOALL, in which codes within the body of this construct is 
executed once for each value specified in the definition of the DOALL domain. 

The conceptual design consists of 128 processor connected through a Connection Net- 
work (CN) to the Extended Memory. The Global Code Memory and the Data Base Memory 
can also be accessed through the CN.  The CN, a form of Omega Network, is a circuit- 
switching network with decentralized control. The Processor Control and Maintenance . 
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Network acts as a tree of AND gates to be used to assist in the high speed synchronization 
a t  the end of the DOALL. Each processor in the FMP is a powerful computing unit. A 
scheme similar to that of the IBM 360/91 [Tom 67) was used to allow multiple functional 
units to be used efficiently. A block diagram is shown in Figure 30. 

S-1 The S-1 project [WC 791 has as its general goal the development of advanced digital 
processing technology for potential application throughout the U.S. Navy. The S-1 multi- 
processor is designed to be at  least 10 times the computing power of the Cray-1. Its archi- 
tecture (see Figure 31) consists of 16 independent, identical uniprocessors sharing a main 
memory of 16 modules, each of 1 billion bytes of semiconductor memory. Each uniprocessor 
is a powerful computing unit with performance comparable to the Cray-1, and can execute 
instructions independent of others. A full Crossbar Switch is used as the interconnection 
network between the processors and the main memory. A maximum peak bandwidth of 
more than 10 billion bits per second can be achieved when all 16 channels of the Crossbar 
Switch are transferring data simultaneously. To further reduce the main memory access 
time, each member uniprocessor contains private cache memories (data and instructions). 
As many as eight peripheral processors can be attached to each uniprocessor to handle I/O. 
The synchronization box is a shared bus connected to each member uniprocessor; one of its 
major functions is to transmit interrupts and small data packets from one uniprocessor to 
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Figure 31: The S-1 Multiprocessor 

any subset of other uniprocessors in order to coordinate processing streams. 

Cm* Cm* [SFS 771 is an experimental computer system designed and built at  Carnegie- 
Mellon University. It is intended to be a testbed for exploring a number of research questions 
concerning multiprocessor systems. Cm* is a hierarchical and modular system, the basic 
building block is a processor memory pair called a computer module or Cm. Up to 14 
Cm’s are connected into a cluster. Each cluster has a shared address mapping and routing 
processor, Kmap, which allows communication with other clusters through the intercluster 
buses. Communication along the 
intercluster buses is done in packet switching mode to avoid deadlock over bus allocation. 
The processor is a DEC LSI-11. All processors share a single segmented virtual memory 
address space of 228 byte. Each processor has a local memory of 64 Kbyte and is also 

A simple 3-cluster system is depicted in Figure 32. 
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part of the shared memory in the system. Efficient use of the system depends on ensuring 
that most of the code and the data references made by a processor are held locally to that 
processor. Inter-process communication is by message-passing and can be easily built on 
top of the Cm* architecture. 

HEP The HEP computer system [Smi 78) is an MIMD machine of the shared resource 
type. A typical system is shown in Figure 33. In this type of organization, skeleton pro- 
cessors compete for execution resources in either space or time. Two queues are used to 
time-multiplex the process states. One of these provides input to a pipelined instruction 
execution unit, which will decode and execute the instruction. For data memory access, 
the process state enters a second queue. This queue provides input to a pipelined switch 
which interconnects several data memory modules with several processors. Each processor 
of HEP can support up to 128 processes. Maximum throughput of lo7 instructions per 
second per processor occurs when there are at least eight totally independent processes in 
each processor. 

. 

HEP instructions and data words are 64 bits wide. A domain of protection in HEP is 
called a task, and consists of a set of processes which are allowed to communicate with each 
other. Processes in different tasks or processors may only communicate via data memory 
if they have an overlapping allocation there. Any register or data memory location can 
be used to synchronize two processes in a producer-consumer fashion. Three states are 
provided: reserved, full, and empty. The execution of an instruction tests the states of 
locations and modifies them in an indivisible manner. 

The interconnection switch consists of a number of nodes connected via ports. Messages 
are sent in packets and routed by the nodes according to their priorities. 

Empress The ETH-Multiprocessor Empress [BBB 821 was built in order to study the 
performance of MIMD architectures in general, and particularly in the field of simulation 
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problems. Its architecture consists of a supervisor processor and a number of execute proces- 
sors, all communicating through an Intercommunication System, Intercom (see Figure 34). 
The supervisor computer is used to partition a problem into executable jobs which will 
be dispatched by the job control unit to the execute processors. If an execute processor 
(master) finds its job exhibit inherent parallelism, it can dynamically request more (slave) 
processors from the job control unit to form a cooperative group. All I/O, precompilation, 
optimization and code generation as well as the integration step control are done in the 
supervisor processor. 

The Intercom consists of a quadratic organized memory-matrix in which each processor 
writes to  all blocks in its row and can read blocks from its column. Data duplication within 
the intercom is only executed into the matrix elements of processors working on the same 
job. In this way, a result provided by any of the processor is made immediately available 
to all other cooperating processors. Different logical addressing methods are allowed in the 
Intercom so that cooperating processors may appear to be neighbors although they may be 
physically apart. 

M P / C  The Multiprocessor/computer (MP/C) [AG 821, a dynamically partitioned sys- 
tem, has the shared memory aspect of tightly coupled multiprocessor systems and also the 
connection simplicity associated with message-connected, loosely-coupled multicomputer 
systems. It is proposed as a candidate for the effective execution of process-structured 
algorithms. 

Its architecture consists of a number of processor and memory modules, all connected 
to a system bus. Process fork and join operations are implemented by bus switching as 
a means of partitioning and recombination of the address space. The bus can be opened 
between any two adjacent processor-memory pairs. Only the leftmost processor in each 
connected bus segment or partition is active, and can access all memory modules in that 
partition. All other processors in that partition are inactive. An active processor can 
activate an inactive processor by splitting the bus segment. Conversely, an active processor 
may deactivate itself by reconnecting its partition to the one on the left. This ability 
to partition and reconnect dynamically is best suited to execute tree algorithms, divide- 
and-conquer algorithms, and database functions. A linear MP/C is shown in Figure 35. 
Multi-dimensional MP/C machines in which each row or column is a switchable bus, are 
also proposed. 

Ultra The NYU Ultracomputer [GGK 831 is a shared-memory MIMD parallel machine 
composed of thousands of autonomous processing elements (PE’s). By the use of an en- 
hanced message switching network with the geometry of an Omega-network, it can approx- 
imate the ideal behavior of Schwartz’s Raracomputer model of computation which permits 
every PE to read or write a shared memory cell in one cycle. The Omega-network also 
implements the fetch-and-add operation used as the synchronization primitive. 
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Figure 36: Block Diagram of the NYU Ultracomputer 

Its architecture consists of thousands of PE’s connected through a connection network to 
thousands of memory modules (see Figure 36). Each PE is a high-speed VLSI floating point 
processor. I t  can also support the fetch-and-add operation: a PE will continue execution 
of the instruction stream immediately after issuing a request to fetch a value from central 
memory, the target register would be marked locked until the requested value is returned 
from memory; an attempt to use a locked register would suspend execution. The connection 
network is an enhanced message switching Omega-network. Each switch in the network 
has a queue and an internal adder to support the fetch-and-add operation. Simultaneous 
accesses to a common memory cell can be detected in the switch and be combined to  a 
single fetch-and-add instruction. The memory unit also has an adder to implement the 
fetch-and-add instruction. 

TRAC The Texas Reconfigurable Array Computer (TRAC) [SUK 801 is an experimen- 
t d  computer system built a t  the University of Texas a t  Austin. The uniqueness and the 
potential capabilities of TRAC arise from its interconnection network; a dynamically recon- 
figurable banyan network (see Figure 37). The banyan network serves to partition and to 
configure the processor, memory and 1/0 resources of the system into different architectural 
organizations under software control. Within a partition, TRAC is varistructured in that 
regardless of the data structure requirements for the task, any data width or architecture 
may be used. Independent or interacting tasks can all be running simultaneously on the 
same computer. The machine is also virtual in that user programs can be oblivious of the 
specific set of memory and processor modules used. 

Inside the SW-banyan network, the nodes can be configured to form three types of 
subtree: data trees, instruction trees, and shared memory trees. Besides shared memory, 
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Figure 37: TRAC’s Banyan Network 

another means of processor-processor communication is packet switching. The packet trans- 
mission occur as a background activity so that they do not interfere with other activity. 

TRAC subsystems can be arthitectured to implement multiple models of computation: 
process forking and joining, task pipelining, data-flow, vector parallelism, and synchronous 
parallelism. 

4.3.3 Different Dimensions of Concurrent Architectures 

In the last section, we have described 18 different concurrent architectures. They are so 
different in structure that it is hard to classify them in any single way. We have already 
described the different models of computation used by Haynes et. al. in section 4.3.1, 
there are four other dimensions that we can identify to describe these machines. They 
are interconnection network, processing element, memory system, and application. In this 
section, we will use these five dimensions to classify the 18 architectures described in the 
previous section. 

Models of Computat ion The six different models of computation described by Haynes 
et. al. are multiple special-purpose functional units (or pipeline), associative processors, 
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array processors, data flow computers, functional programming language machines, and 
multiple processors. 

Interconnection Network In the machines that we have discussed, there are many types 
of interconnection network. Systolic arrays are connected in a pipelined fashion. STARAN 
has its own FLIP network. MPP and Illiac IV and MPP are mesh-connected. BSP and 
S-1 use full crossbar. CHiP uses the switch lattice. NON-VON is tree structured. Cm* 
and MP/C are bus oriented. Cedar, FMP, and Ultra use the Omega network. HEP uses a 
pipelined switch. Empress has a quadratic memory matrix. TRAC has a 2-3 SW Banyan 
Network. Some of these interconnection networks can again be divided into either central 
or distributed control. Reconfigurability is a feature of some of the networks, which allow 
them to reconfigure the system resources dynamically to match the need of the problem. 
For multi-stage networks, three types of switching modes are possible: circuit, message, 
and packet. The purpose of the interconnection network is for the communication among 
processors (P-P), or processor to memory (P-M),. or both. 

Processing Element The number of processing elements used in each architecture varies 
from 1 for the DDSP to 64K for the CHiP. Most architectures allow variable number of 
processing elements. Requirements on the processing elements also vary. 

STARAN, MPP, and NON-VON use very simple processors. CHiP, Cm*, Empress, 
and TRAC use off-the-shelf microprocessors or LSI-11. Others use powerful custom made 
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processors. The word length of the architectures ranges from 1 bit for STARAN and MPP, 
to 64 bits for Illiac IV, Cedar, FMP, S-1, and HEP. 

Memory System Memory system can be either shared or local. In shared memory, dif- 
ferent processors can access the same memory cell for communication and synchronization. 
Data stored in local memory can only be accessed by the processor attached to it. Some 
local memory are also used as instruction cache to reduce the traffic in the interconnection 
network. STARAN and DDSP have associative memory for content-addressable memory 
and matching store respectively. Ultra has adders in the memory system to support the 
fetch-and-add operation. TRAC has index registers residing in the memory modules so that 
a shorter 8-bit macreinstruction can be sent by the processor instead of a longer 16-bit 
full address. References to locations in memory modules are made by specifying one of the 
index registers. 

Application These 18 machines are designed for different applications. In here, we have 
listed a few important and representative areas: general purpose, scientific, data base, image 
or signal processing, simulation, testbed, and divide-and-conquer. 
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4.3.4 Conclusions 

Although the survey is not complete, it does cover a wide spectrum of both commercial 
and research machines. It is not the purpose of this research to give a detailed summary of 
each machine, but to give a general idea of the current status of the research in concurrent 
architecture. Different architectures are specified using five dimensions: models of com- 
putation, interconnection network, processing element, memory system, and applications. 
Other dimensions, especially software aspects, can also be used, for instance, languages, 
operating system, scheduling method, communication and synchronization method. With 
the use of this specification method, we can specify the range of machines that could be 
modeled by our concurrent system testbed. 

4.4 Available Modeling Tools 

Another concern during the Background Study phase was to review the available tools 
which might be available to assist in the performance projection process. These included 
Emmy, a hardware-based computer system emulator, and Adlib-Sable, a simulation system 
developed originally at  Stanford and now available commerically. 
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4.4.1 Emmy System Analysis 

An emulation system known as Emmy was chosen as the subject of this study because it had 
been heavily used (at Stanford) in the past. Simulators for IBM 360, DELtran, ADEPT, 
PDP11, HP1000, Intel’s 8080, Data General’s Nova, MIPS, and others existed. In addition, 
local experts on the system were available. 

Emmy is a user-microprogrammable machine, with a 4K microstore. The fast microstore 
is available for storage use by the microprogram to  simulate target machine resources, such 
as registers. The control store can be dynamically loaded. This dynamicism also allows for 
some cacheing of microinstructions which can be moved in from main memory as needed. 
All data paths are 32 bits wide, and address size is 24 bits. 

Emmy was intended to be a pipelined machine, with three pipe stages. These stages 
were: the I-machine, which controlled instruction fetch and decode; the T-machine, which 
controlled register/register operations and branching; and the A-machine, which controlled 
non-register storage. The present implementation of Emmy uses ECL and NMOS technol- 
ogy, with a PDP 11/07 running Mini-Unix as a front end. Several LSI versions were also 
built. None of the Emmy implementations were ever actually pipelined: the I, T, and A 
stages were executed sequentially. 

The primary software support for Emmy is Emmyxl, a cross assembler for the Stanford 
Emmy. This assembler allowed for micro-programming Emmy on the front end system 
in a mnemonic assembly language. Other support software for driving devices, loading 
programs, etc., was available. 

The main data extracted from Emmy simulations was counts. Counts of virtually any- 
thing, such as instructions executed or memory access patterns, could be acquired. These 
values, however, had to be counted by the emulation microcode, as there was no built-in, 
un-obtrusive measurement mechanism. 

Several good and bad things were clear about the Emmy System. When first built, 
even though not pipelined, Emmy waa 10-100 times faster at emulation than a conventional 
machine. Although Emmy is now no faster than a Vax for emulation, if reimplemented into 
a pipelined machine with newer faster components, Emmy would probably regain its speed 
factor advantage of 10-100. However, the addition of the instrumentation code for counting 
often slowed emulations by a factor of two. 

The opinion of Emmy’s users is that it was simply too difficult to develop an emulator. 
Insufficient tools were available, and developing and debugging at the level of microcode 
assembly language was too difficult and time consuming. 

Emmy was not developed to support emulation of large or concurrent systems, and thus 
has no special facilities for doing so, nor is especially suited to multi-processors emulations. 
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Finally, because Emmy was constructed from special-purpose hardware, the maintain- 
ability of the system reduced as the original project participants left Stanford. This ob- 
servation is important when considering options in the development of the Testbed and 
Emulation Tools. 

4.4.2 Adlib-Sable System Analysis 

Adlib-Sable is a hierarchical simulation system originally developed at Stanford University. 
Since its original development, the system has been developed commercially and now is 
available in the general CAD marketplace. Adlib-Sable is capable of representing systems 
of different levels of abstraction. The signals between functional units are not constrained 
with lots of limitations. Adlib-Sable requires that the topology definition be separated from 
the functional definition of a system, a feature often found to be advantageous. 

In order to test the potential use of this system, an interconnection network simulator 
generator was developed which could be parameterized to specify the type of node, the type 
of interconnection, etc. 

After spending a considerable amount of time with this system, we discovered that most 
of the time was spent on the following areas: 

0 presentation of results 

0 specification of test case generation alternatives 

0 debugging 

Presentation of Results Adlib-Sable supported the definition of the functionality of the 
units. However, problems arose when beginning to decide how to ‘instrument’ the simula- 
tion in order to observe what was happening during simulation. Initially, the experimenter 
does not have a firm idea of what the key factor of system performance will be. Moni- 
tors of average delay time, total number of packets sent, etc. are inserted as a matter of 
course at this initial point. In addition, a few debugging features, such as system-status 
snapshots, special events reporting (such as queue full), and special packet tracing, were 
initially installed. Then system debugging began. At that point, the initially installed ‘in- 
strumentation’ didn’t seem realistic at all. For example, the report of an average time delay 
must be understood. What contributes to the average delay? Without an understanding of 
the factors contributing to the overall factor, the overall factor is not understood or appre- 
ciated. However, in order to understand the contributing factors, the trace of more detailed 
information leads immediately to a screen full of a very large amount of disorganized data. 
Printing out the data doesn’t help much either, except to make sure that a physical record 
exists of what occurred during that .experimental run. 
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Special output packages had to be developed, first just to organize the outputs of the 
built-in instrumentation and put it in tabular forms. Later experiments were concerned 
with graphical presentations such as panel meters on the display screen in order to present 
the data in a manner easier for the human observer to understand and analyze. While the 
specification of the instrumentation could be done in Adlib-Sable, it was supported more 
from the point of view of additional functionality within the system, rather than from the 
point of view of how to observe something of interest within the system. 

Test Case Generation Alternatives As mentioned before, Adlib-Sable was very sup- 
portive in the specification of the functionality of the interconnection network functionality. 
The purpose of creating these simulators was to be able to test them under widely vary- 
ing loads, especially where these loads were, themselves, derived from real applications. 
Unfortunately, Adlib-Sable did not have facilities to produce test cases. 

In the case of the interconnection network simulation system, a very flexible packet 
generator would be an extremeely valuable tool for the test bed, both for debugging and 
for exploring the behavior of the system being simulated. .A powerful and flexible testcase 
generator could be used to setup experiments to single out key factors of performance or 
to force some particular event to happen in order to understand how a particular system 
event might occur. 

Some of the functions such a test case generator might provide are: 

Generate packets from a fixed random function. The user would specify the random 
function and the average rate of generation. 

0 Generate packets of the size and distribution specified by the user. The size could be 
expressed by some computational function. For example, short (250 byte) fixed-sized 
packets might be generated 70% of the time and exponentially distributed packet sizes 
with a mean around 1K bytes might be generated 30% of the time. 

0 Generate packets with specified attributes. Packets can carry attributes such as trace 
bit, flush bit, broadcast bit, priority bit, and many others as a tool in debugging and 
probing the performance of the system being simulated. 

0 Generate packets from an external file definition. External file formats then become 
an additional issue. Specifically: 

- Should the external file name out every packet, or could it be a generator, or 
could it specify the behavior of a generator pending further consultation with 
the external file. (Le. definition of a packet generation process) 

- Should command sequences be provided so that more complex testcases involving 
a combined generation approach could be utilized. 
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The user needs the flexibility to call on any of the testcase generation alternatives 
dynamically while studying the system being simulated. Recompilation, linking, and loading 
would be too cumbersome to expect efficient production of new results. A logical approach 
is to have a n  integrated user command language, where both the batch file and the shell 
of the interactive user interface share the same command language. However, in order to 
make the most out of the command language, it should be able to incorporate debugging 
commands. 

Debugging Debugging the generated interconnection network simulators was probably 
the most difficult task during this part of the study. The difficulties were in part, be- 
cause parallel systems are difficult to debug. The lack of debugging tools in Adlib-Sable 
contributed to the difficulties immeasurably. 

Adlib-Sable itself is a compiler which compiles the simulation specifications into Lpas- 
cal. Therefore, Adlib-Sable is an Lpascal preprocessor. Debugging in Adlib-Sable is ac- 
complished using the Lpascal debugger, which is the only means that a user has to ac- 
cess/identify/examine/ or alter the variables in the program. The Lpascal debugger is 
primitive and supports a limited number of functions. In addition, after Adlib-Sable con- 
verts a simulation specification to Lpascal code, keeping track of the relationships between 
variable names and functional structures in the original specification and the executable 
forms produced seems almost impossible. Since the debugger did not relate back to the 
simulation specifications, debugging was extremely difficult. 

Many systems are made up of homogeneous components. In this case, a single com- 
ponent in the source code may have many copies in the final program. This impression is 
fostered by a system which has different registers for the internal state copies, but a com- 
mon set of functional code. When executing this sort of system, many pointers and array 
indices must be analyzed, just to locate the object of interest. 

Debugging parallel programs represents another form of difficulty. A sequential program 
can be followed step, by step, by step-with time implicitly following. This implicit time 
stepping is lost in a parallel system. Now many functions are executing ‘simultaneously’ in 
different parts of a system. To understand the interactions between these different parts 
of a system, careful management of global system time is required. Adlib-Sable does not 
provide this capability. For example, consider the Adlib Sable statement: 

UPON BooleanExpression CHECK event DO statement 

Adlib-Sable is not clear what the detailed action will be during simulation. Will the 
event be queued up and the statement be made ready for execution upon completion of 
the event check? Or will the event check be lost because the statement will already be 
executing, or what? Even a simple statement like 

ASSIGN expression TO y SYNC sysclock PHASE1 
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can have many possible interpretations. Would the value of the expression be evaluated 
while executing that statement, or would the execution be delayed until y is really ready to 
be assigned to? 

During debugging, a structured report of what is going on within the system is impor- 
tant. If a particular node is found to  behave abnormally, the internal states of that node 
AND the surrounding neighbors may be of specific interest. All of this information needs to 
be observed simultaneously. However, all internal states of all nodes are not of interest all 
of the time. Rather, the right information from a selective set of nodes a t  a particular time 
is all that is needed or desired. What the right information is cannot be predicted until it 
is needed. Therefore, debugging tools must be interactive and integrated with the built-in 
instrumentation. 

Often interesting anomalies appear in the middle of the simulation. In order to observe 
and understand them, the entire start of the simulation must be completed before the 
‘interesting’ work starts. Check-point facilities, to allow restart from an intermediate state 
without having to resimulate from the start can significantly speed this sort of work. In 
addition, facilities to insert break-points, or traps, in a program which activate only when 
the condition occurs are very useful. For example, we might write: 

break on condition. 

This facility would interrupt the normal flow of execution when certain conditions are 
met. The insertion, enabling, and disabling of these break conditions must also be done 
dynamically during the simulation rather the during the original design. Otherwise an 
unacceptable cycle involving program editing, recompilation, relinking, debugger loading, 
and debugging environment setup would be resumed. 

In Adlib-Sable, an artificial execution environment had to be created manually for debug- 
ging purposes. Dummy data structures were created with special internal states and many 
program variable changes. Initial setup effort for the simulator was, therefore, exceptionally 
high. The cost of this initial setup effort was an impediment to future implementations of 
a new debugging environment when major changes were made in the simulation system. 

Other Drawbacks of ADLIB-SABLE 
bilities in ADLIB-SABLE, the following are some additional drawbacks: 

In addition to the above major missing capa- 

Static connections: The connections between portions of a system are fixed a t  com- 
pile/link time and cannot be changed during program execution. No generalization 
is provided to describe repetitious, related connections. Therefore, the user has to 
list out every connection explicitly. Adlib-Sable does support structured data passing 
between two units, however, the entire data structure must be changed at  the same 
time using a single ASSIGN statement. This constraint prevents the use of a single 
connection to carry all the signals between two units. The result of these constraints 
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is that the topology file becomes very large for some applications, in particular, for 
network simulation. Simulation of networks is almost impossible when all connections 
must be written by hand. When the connections are generated automatically, such 
as in the network simulator generator, which was the experiment here, no means was 
provided to check the correctness of the productions. 

0 ADLIB-SABLE requires concern about connections inside an abstraction, even when 
already defined. For example, if a number of gates are connected to an MSI component 
and if several of these specific MSI’s are to be connected together, the connections 
inside all the MSI must be specified. 

0 If the components of a group of identical elements are to be identified, other techniques 
must be used to generate the component ID’S rather than definition within the element 
itself. 

0 While the version of ADLIB-SABLE we used was a number of years old, it suffered 
the pangs of much ‘university’ code. The language itself is not very stable. Very little 
support is available (consisting primarily of other graduate students who may have 
used the system earlier). Many times long debugging sessions discovered that what 
was thought to be a simulation system error was a bug in the language. 

0 The productivity of a user of ADLIB-SABLE in this environment is very low. The 
reason is that ’turn-around’time and cost is very high. If a change is made to an 
Adlib-Sable program, it must be recompiled (using Adlib-Sable, compiled again us- 
ing Lpascal (which gives a listing of compiler output for use during debugging since 
the listing gives the relationships between compiler input and output variable names), 
relink the program with other libraries, run it with the debugger, and setup the debug- 
ging environment. This high cost tends to discourage the user from experimentation 
with different settings, with alternatives, and with other test patterns. 

5 Testbed and Emulator Tool Alternative Studies 

Three alternatives to the design of testbed and emulation tools were considered. These 
were: 

0 IF1 Simulation 

0 Special Hardware 

0 Intermediate Level Modeling 
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5.1 IF1 Simulation 

IF1 is an intermediate form of the SISAL dataflow language. This intermediate form is the 
common target for various SISAL front-ends and serves as a virtual machine definition for 
SISAL implementation experiments on the Denelcor HEP, on DEC VAX 11/780 computers, 
on the Cray 1, and on the Manchester Dataflow machine. 

SISAL is a single assignment dataflow language, and did not seem to be a good choice to 
use to represent the various levels of application instantiation. Since the SASL experiments 
showed the possible power of a purely functional approach, feasibility of mapping SASL to 
IF1 was conducted. 

5.1.1 SASL to IF1 Compiler 

The goal of building this compiler was to examine the effect of different source languages 
on the resulting executable code. IF1 is an intermediate graph for the data flow single 
assignment language SISAL, whose basic philosophy is very different from SASL applicative 
philosophy. This particular combination of source and destination language was chosen 
because of previous familiarity with SASL, and the large amount of work being done on IF1. 
Code generators are being built from IF1 to several machines, including HEP and CRAY 
1. If the compiler here is successful, and the code-generators elsewhere are successful, the 
compiler would become a useful tool for testing applicative languages on supercomputers. 

The compiler was written with Yacc, C, and Lex. Some problems were encountered, 
the major ones being that parts of SASL were not LALR. The lack of accurate and precise 
documentation, especially for IFl,  was also a severe handicap. However a working compiler 
was produced. A simulator exists for IF1 which is available to us (from LLNL). However, 
contrary to the specification of IF1, which specifically states that type nodes are optional, 
the version of the simulator we had requires type nodes in its IF1 program. This constraint 
is impossible to meet when compiling from SASL, as the type of some expressions cannot be 
determined until run time. So, the IF1 output from the compiler has not yet been actually 
executed . 

However, the compiler was still a success in that it showed that the applicative language 
could be compiled to a data-flow single-assignment intermediate form. The main difficulties 
encountered in compiling resulted not from the basic differences between applicative and 
single-assignment philosophies, but rather from slight differences in the semantics of the 
two languages such as the handling of undefined values, the use of infinite data structures, 
etc. 

The SASL to IF1 compilation process could be made operational (assuming some work 
on the IF1 simulation system). However, the level of detail of modeling in IF1 ( *  instruction 
level modeling) was felt to be too low level for a software-based testbed and emulation-based 
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execution environment. This level of simulation detail would not allow the study of large 
enough models. 

5.2 Custom Hardware Testbed 

5.2.1 Requirements of the testbed 

The testbed should be an effective tool for studying the behavior of any concurrent system of 
interest. I t  should be able to model the concurrent system in arbitrary details (according to 
the input specifications), to simulate execution of any target program at a reasonable speed, 
to pinpoint any noteworthy system behavior during the simulation, to gather statistics from 
the program executions, and to extract system characteristics and performance measures 
from these statistics. Because behavior of concurrent systems is not yet well-understood, 
while actually building a concurrent system is very expensive, the testbed should be able 
to aid efficiently both the design and the evaluation of concurrent systems. 

For the design efforts considered during this study, the following baseline requirements 
were established for a custom hardware testbed. 

1. It should be capable of simulating a multiprocessor system of one thousand processors. 

2. The simulation time should be less than two days for one hour of actual program 
execution (on the same technology scale). In other words, the simulation should not 
be more than fifty times slower. 

3. The testbed design should be modular and expandable. 

In order to provide versatility and better utilizability, the following desirable features 
are also required. 

1. The user should be able to interact with the testbed during simulation. The simulation 
process should be monitored with built-in instrumentation such that the user could 
display any selected result dynamically. The testbed should be always under user’s 
control. 

2. Necessary monitoring facilities should be provided. These include insertion of system 
check points, provision of various types of stepping modes, and capability to alter 
internal process states and data during simulation. 

3. The system should be able to run simulations of different system representations. 
For any two representations between which explicit correspondence is established, 
capability to switch from one representation simulation to the other representation 
simulation without program re-execution should be provided. 

. 
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4. Larger concurrent systems should be able to be simulated, but with slower simulation 
speed. 

5.2.2 Conceptualization of the system under s idat ion  

In the testbed design, the system under simulation is conceptualized as an interconnection 
of functional units. Functional units are entities with some specified properties, while 
interconnection links between functional units are merely abstraction of the relationships 
between some attributes of the connected functional units. For example, if it  is a physical 
system, then a functional unit can be a processor, a memory unit, a interconnection block 
(a switch or a network), or a subsystem, and an interconnection link represents an physical 
interconnection without any delay; if it is a software system, then a functional unit can be 
a process, a module or task, a procedure or subroutine, or simply a block of codes, and an 
interconnection link represents either a data dependence or a precedence relationship. 

Accordingly, any representation of the system under simulation is formulated as a (di- 
rected or undirected) graph with nodes and edges representing the functional units and 
interconnection links respectively. 

5.2.3 Organization of the testbed 

As shown in Figure 43, the testbed in design is functionally decomposed into three com- 
ponents: the testbed component, the statistics collection and analysis component, and the 
control and user interface component; 

The testbed component performs the modeling and simulation functions. It consists of 
a number of functional unit emulators, a configuration network and some memory extension 
units. The functional unit emulators are processors with local memories. They can emulate 
any designated functional units of the concurrent system under study. The configuration 
network interconnects all the functional unit emulators and is configurable to support the 
interconnection links of the concurrent system under study. The memory extension units 
are global memories or external storage subsystems. They are accessible by any functional 
unit emulator to serve as the extension of the corresponding local memory. 

The statistics collection and analysis component collects and stores all the simulation 
statistics and system informations. All during-simulation and after-simulation data analyses 
are performed by this component. It consists of a number of instrumentation processors, 
a instrumentation network and a mass storage subsystem. All instrumentation processors 
have their own local memories. Some of them are tightly-coupled with the functional unit 
emulators in the testbed component to provide efficient primitive data collection. The other 
processors perform the data routing, filtering, formating and the subsequent analysis. The 
instrumentation network interconnects the instrumentation processors and the mass storage 
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subsystem, and is configurable to aid efficient statistics collection and analysis. The mass 
storage subsystem stores all simulation and.system statistics for future references. 

The control and user interface component consists of two subcomponents. The control 
subcomponent directly controls the operations of the entire testbed, and maintains the 
testbed. The user interface subcomponent interacts with the user. It allows users to monitor 
the simulation process and to display results dynamically. 

5.2.4 Design of the configuration network 

The design of the configuration network in the testbed component is the most essential part 
of the entire testbed design. It directly impacts the overall performance of the testbed. In 
the following, the general requirements of the configuration network are first stated. Then 
it is shown that the design problem can be formulated as three interrelated subproblems. 
Finally, some results related to  these subproblems, especially the mapping problem, are 
reported. 

I. General requirements of the configuration network 

For the testbed component to model a given concurrent system, it is essential to map the 
system representation graph into the testbed structure. That is, every functional unit in the 
representation graph is designated to be emulated by an emulator in the testbed, and every 
interconnection link between two functional units is realized by some communication paths 
between the corresponding emulators. The basic requirement of the configuration network 
is to provide the necessary connectivity among the emulators in the above mapping. 
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Figure 43: Organization of the testbed 
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In order to achieve acceptable simulation performance, it is required that for every 
interconnection link in the representation graph, the resulting communication delay is short 
and within some tolerable limit. Besides, any network configuration and functional unit 
designation should be accomplishable within a reasonable time period. The algorithm to 
determine the above mapping should be of complexity of polynomial running-time. High 
utilization of the available emulators is desirable. 

The design of the configuration network should be modular and incremental expandable. 
It should be of low interconnection complexity and should be compatible with the current 
device and packaging technology. 

11. Formulation of the network design problem The configuration netwark design 
problem can be formally formulated into three interrelated subproblems. 

Assumption: Any given system representation can be formulated as a graph in which 
the degree of each node is constrained to a small integer d. This assumption is justified on the 
basis that in reality, both the hardware building components and the software elementary 
functional units have limited input/output capabilities due to either physical or logical 
constraints. 

The three subproblems are: 

1. The interconnection structure problem 
Find an interconnection structure of low interconnection complexity such that the 
other two subproblems can be solved in polynomial time. 
Let Gtest=(Nte,t,Ete,t) be the graph denoted such structure. 

2. The mapping problem 
For an arbitrary graph, G 
kl Ntest I, find a mapping jbk,, +!Ntest such that: 

=(N,b-,E,bj), of maximum degree of d and IN,bjl 5 

a. for any u,v in Nob+ Au)=Av) if€ u=v ; 
b. for any e=(u v) in Eobj, it is mapped to a path (Xu) .. Av)) in G test and the 

c. for any edge in Etest, at  most c edges in Eob, are mapped to paths via the edge. 

The ratio k bounds the size of the system (in terms of the number of functional units) 
to be mapped. The parameters D and c characterize the maximum intrinsic com- 
munication delay (Le. delay without any traffic congestion and contention) and the 
maximum communication traffic allowed in the resulting configuration, respectively. 

length of the path is at most D ; 

3. The graph reduction problem 
For any graph Gobi of maximum degree of d and of size greater than klNtest I , find 

a graph reduction g: N,bj+2 Nobi such that : 

59 



a. l{g(u): u is in N,bj}I <, klNtest l  ; 

b. the reduced graph G,,d=(N,,d,Eted) has maximum degree of d, 
where N,,d={g(u) u is in Nobi) and E,,d={(g(u) g(v)) : (u v) in E,Q} ; 

c. for any two distinct edges (u v) and (u v’) in Gob? g(v) # g(v’); and 
for any two distinct edges (u v) and (u’ v) in Gob? g(u) # g(u’). 

The motivation of the first two conditions is to transform the problem into the map- 
ping problem of the reduced graph. The third condition is necessary for maximum 
concurrency of the resulting system. 

111. The mapping problem The mapping problem is difficult in general. It bears some 
resemblance to the subgraph isomorphism problem which is known to be NP complete. At 
the time of this study, no satisfactory solution to this essential problem had been found. In 
the following, some preliminary studies are presented. 

bf Work by Rosenberg [RS 781 

Arnold L. Rosenberg has extensively studied a similar problem (the data encoding prob- 
lem). The following two results are of interest: 

1. Let G=(N,E) be a connected graph. For any elementary cycle or line of order IN1 , 
there is a mapping to G such that 

(a) the longest path mapped by an edge is of length at most 3 ; 

(b) the average length of the path mapped by an edge is at  most 2 - 21NI 

Moreover, the mapping can be found in time O( I El), and is optimal. 

2. For any mapping of a graph G of maximum degree dG to a connected graph H 
of maximum degree d ~ ,  the longest path mapped by an edge is of length a t  least 
109 (dG)/b(dH). 

A graph expansion technique 

The motivation of the introduced technique is to transform the object graph into simple 
graphs of known structures. Therefore the subsequent mapping may become simpler. 

By this technique, the node set of the object graph is duplicated into many copies. The 
edges of the object graph are distributed among these duplicated node sets to form a set 
of simple graphs. Each resulting simple graph is then mapped into a line graph. Each 
line graph can be further mapped into any connected graphs. Figure 44 shows an example 
where the object graph is expanded into a set of complete binary trees. 
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Figure 44: The graph expansion into complete binary trees: (a) the object graph, (b) after 
edge partition, (c) after mapped into line graphs, (d) after further mapped into binary trees. 
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In general, the following theorem is established. 

Theorem: any graph G=(N,E) of max. degree 2n can have its edge set E partitioned 
into n sets, i.e. Ei,  i=I, . . ,n , such that each graph (N,E;)  can be mapped into a line with 
each edge mapped into a line path of length at  most 2.  Furthermore, each graph (N,E;) 
can be mapped into any connected graph of the same size with each edge mapped into a 
path of length at most 5. 

ProoR 

First the graph is augmented to be 2n regular'. By the Petersen Theorem' in graph 
theory, the edges in the augmented graph can be decomposed into n disjoint factors. (This 
can be done in time a t  most of order of ( n q 2 ,  where N is the size of the graph.) Then 
each factor is mapped into a line by transforming each cycle (u~,u~,u~,..,u~,u~,uz,u~) into 
a line ( u ~ , u ~ , u z , u ~ , u Y ,  ...) and joining the resultant lines. It is easily seen that each edge 
is mapped to  a line path of length at  most 2.  Furthermore, by Rosenberg's algorithm, any 
line (or elementary cycle) can be mapped into any connected graph of the same size with 
each edge mapped to a path of length at most 3. It can be shown by the same mapping, 
every line path of length 2 is mapped to a path of length at most 5. This concludes the 
proof. Q.E.D. 

The above graph expansion technique leads to the following observations: 

1. Since each node is duplicated into n nodes, the connection of a node to its n images 
becomes a new problem. 

2 .  If no subsequent graph reduction is performed, the resulting utilization of the available 
emulators, i.e. k 5 I / n ,  may be acceptable only for small n. When n=2, or d=4, the 
utilization is no more than fifty percent. 

3. If permutation networks are used to connect the n images, the resulting path for each 
edge becomes of length of O(ZogN), where N is the size of the original graph. 

4. If the permutation networks are used to  setup permanent hardware links between a 
node and it's n images, then the delay can be maintained to be constant (i.e. 4 for 
lines, 7 for connected graphs) during simulation time. 

General interconnection network considerations The part of the study is partly mo- 
tivated by the above observations. First, it is meaningful to know what is the theoretical 
bound on the diameter of any degree-constrained graph. In other words, how short a com- 
munication delay can be in a network of restricted interconnection complexity. Related 

c 

'A graph is regular if each node in the graph has the same degree. 
'Petersen Theorem [1891]: If G=(N,E) is a regular multigraph of even degree d=2n, then G has n edge- 

disjoint factors. [A factor of a graph is a set of node-disjoint elementary cycles such that each node is 
contained in exactly one cycle.] 
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questions are : what tradeoffs can be made and how effective they are. The result is 
summarized below. Then, a class of interconnection networks is defined. It is shown that 
this class of networks processes many desirable properties. I t  may be one of the potential 
interconnection structure to be adopted. 

1. The Moore bound [AL 821 

For any graph of size N and maximum degree d, it’s diameter D (i.e. the maximum 
distance between any two nodes) must be at least 

log(N(d - 2) + 2) - log(d) 
log(d - 1) 

Furthermore, D. log(d) is at least of order of log(N). 

This gives readily the following implications. 

0 For constant d, D is at least of order of log(N). 
0 Even d grows as log(N), D is at least of order of log(N)/ log(log(N)). 
0 The Moore bound is diacult to attain (if not unattainable). It is also difficult 

0 At the Moore bound, d increases much faster than D decreases. 
to decrease D without increasing d. 

2. A Class of Interconnection Network 

Before the class of interconnection network is defined, it is necessary to mention the 
product of two graphs. 

The product of two graphs G l = ( N l , E l )  and Ga=(N%,E2),  denoted as G 1 x G 2 ,  is 
the graph (N,E) that 

(a) N = N1 x N 2  ; and 

either 
or 

(u v) in E1 and x=y 
(x y) in E 2  and u=v. (b) ((u x) (v y)) in E if and only if 

Figure 45 gives an example. 

A Recursive Definition o f  a Class of Interconnection Networks: 

(a) R1 is a connected graph, designated as the elementary building graph. 

(b) Ri+l = RixRl 

Properties of Ri : 

(a) Size of ~i : N; = 
(b) Maximum degree of Ri : di = i.dl , i.e. O(1og N;)  
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Figure 45: The product of two graphs 

(c) Diameter of Ri : D; = i.D1 , i.e. O(log N ; )  
(d) The routing control scheme is distributed and simple. In Ri, every node can 

be identified uniquely by an i-digit Ni-based number. Any two nodes can com- 
municate with each other within i routing steps. The routing is based on the 
difference of the identity numbers of the source and destination nodes. In each 
routing step, the difference number is reduced in a way that one of its non-zero 
digits is changed to zero and the other digits remain unchanged. This is easily 
accomplished by routing through the corresponding R1 connections. The order 
of the routing steps is immaterial. 

(e) Since multi-path communication is available between any pair of nodes, the net- 
work is fault-tolerant. It is also dynamically adaptable to the network traffic to 
maintain low communication delay. 

(f) Since for each expansion of Ri, i.e. from Ri to  Ri+l ,  it is always N i  mod- 
ules of Ri to be connected in a predefined way (the R1 interconnection), the 
implementation of Ri is regular and incremental expandable. 

This class of interconnection network is general. It defines the hypercubes and includes 
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Figure 46: The class of network with R1=K2, the n-cubes 

topologically many multi-stage networks. 
nodes), Ri defines the hypercubes or n-cubes.(Figure 46) 

The class of networks with R1=K4 is considered in particular (Figure 47). For this 
class of networks, d;=3.log(N;)/2 and D,=log(N;)/2. Table 1 gives some figures comparing 
this class with the n-cubes. It is found that for the range of size of interest, the diameter 
is reasonably small while the maximum degree is still physical maintainable. Furthermore, 
the implementation of the K 4  is compatible to current VLSI technology. All these make 
this particular class appealing. It may be one of the potential interconnection structure to 
be adopted in the testbed design. 

When R 1=K2 (i.e. complete graph of two 

Table 1: Comparisons between two classes of networks 

Rl=K4 n-cubes 
N d D d  D 

256 12 4 8 8 
4096 18 6 12 12 

65536 24 8 16 16 
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Figure 47: The class of network with R1= K4 

5.2.5 Summary 

The success of the custom approach requires a satisfactory solution to  map an arbitrary 
graph onto the proposed interconnection structure. Although the proposed interconnection 
structure has a number of desirable properties, the mapping problem remains to be solved. 

The custom approach has the additional drawbacks of high-cost of original development, 
questionable maintainability, and substantial software cost in run-time environment and 
support tools. 

5.3 Intermediate Level Analysis 

A final alternative considered was to conduct analysis of the execution of an application 
from the point of view of an intermediate language and virtual machine structure. In this 
case, the intermediate language hypothesized is a higher level than that represented by the 
IF1 option considered earlier. The proposed structure of the concurrent system testbed 
would consist of three parts: 

0 software analysis, 
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Figure 48: Block Diagram of Intermediate Level Virtual Machine Model 

hardware modeling, and 

0 execution modeling. 

Figure 48 shows a block diagram of this structure. 

In software analysis, the effects of the compiler in translating the source code to the 
intermediate language would be modeled. Compilers for different languages, or even dif- 
ferent compilers for the same language, might produce different intermediate code for the 
same application. The differences are even more significant when optimization is taken into 
account. 

The form of the intermediate language would be some form of dependency graph like 
a Directed Acyclic Graph (DAG), showing the precedence relationship among instructions. 
The system proposed assumes that either the compiler is smart enough to detect all possible 
concurrency inherent in the software, or that the concurrency was identified explicitly in the 
source code so that the compiler could detect it. No automatic parallelization is assumed. 

In hardware modeling, a concurrent machine is modeled as a virtual machine consisting 
of a set of primitives, or components, that can be used to execute the intermediate language 
used in the software analysis portion of the system. Thus, different machines can be modeled 
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as the same virtual machine, but with different timing characteristics from each other. By 
hiding the lower level implementation details, the amount of computation needed to study 
execution should be significantly reduced. 

The execution unit accepts the DAG, which defines the software model, and the vir- 
tual machine representation of the underlying hardware system, and produces approximate 
performance projections. These projections may include total execution time, resource uti- 
lization, throughput, response time, maximum degree of concurrency utilized, location of 
system bottlenecks, etc. 

Notice that the modular structure of the testbed allows different combinations of soft- 
ware and hardware to be modeled in the same way. Execution of the same software model 
by various virtual machines could be used to determine which machine organization would 
be the most effective for actual execution of that application. Similarly, once an underlying 
machine design is complete, a virtual machine model could be created and exercised wit.h 
various applications in order to determine the sensitivity of the machine design to various 
application characteristics. This modularity ensures that once a piece of software or hard- 
ware is modeled, it could be saved in a library and reused later without the need for initial 
preprocessing. 

5.3.1 Software Analysis 

Imperative languages like FORTRAN, Pascal, and C, are still the most popular in today’s 
software. A large fraction of important application software is written in these languages. 
However, in future concurrent system, other types of languages, such as dataflow languages, 
functional programming languages, or logic programming languages, may be dominant. 
Thus, the design of our testbed should be independent of the source language so that 
software written in different source languages can still be modeled. A graphical form of 
intermediate language is chosen as a language-independent form to represent the various 
software to be studied. 

An algorithm, when written in different source languages, may map to different machine 
code, even on the same machine. These variations are due, in part, to the semantic gap 
between the language and the underlying machine. In addition, compiler optimization 
aggravates the problem. Different optimizing schemes produce different code sequences. 
Thus, in software analysis, we have to make sure that the DAG obtained from the source 
language does represent the best possible code sequence regardless of which compiler is used 
in the process. 

Another problem specific to concurrent systems is the expression of concurrency. The 
maximum inherent degree of concurrency of programs written in high level languages are 
usually not explicitly shown. The use of the DAG as the intermediate language also comes to 
aid in this case. All precedence relationships are displayed graphically so that all processes 
can be executed concurrently can be easily identified. 
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In summary, we need a compiler system to translate the source code into the graphical 
intermediate language form. This compiler system should have a set of frontends, one for 
each possible source language. Different optimization schemes should also be supported in 
such a manner that they could be turned on and off individually in order to experiment 
with their effects on performance individually. The software modeling subsystem must be 
able to extract and represent all the inherent concurrency in the software. This requirement 
may lead to the addition of notation to be manually inserted in the source programs since 
many existing languages do not have sufficient notation to represent concurrency. 

5.3.2 Hardware Modeling 

The hardware is modeled as a virtual machine consisting of a set of primitives. These 
primitives are common to all machines so that they form a uniform interface to the execution 
unit of the testbed. The use of the virtual machine primitives models the effect of the 
operating system in hiding hardware details from the software. This approach allows very 
different concurrent machines to appear as the same virtual machine with differing timing 
characteristics among the virtual components. 

The set of primitives uniquely represents the underlying modeled machine by preserving 
the timing characteristics and resource usage information. They are used by the testbed 
to interpret the nodes in the DAG into multi-resource, multi-stage tasks. Each task has a 
service demand on each of the physical resources for a certain amount of time. For example, 
a typical task may demand 3 milliseconds of service from the CPU unit in the first stage, in 
the second stage, 100 microseconds from the interconnection network and 20 microseconds 
from the memory system, then in the third stage, another 10 milliseconds from the CPU. 

The choice of the set of primitives is very important. The choice must be made in such 
a way that the DAG’S of all application software that will be modeled in the testbed can 
be interpreted. An example of the set of primitives is given below. Of course, they are not 
the only possible set-other sets may also be considered. 

1. Expression Evaluator: When given an expression, this primitive will evaluate the 
expression and give the result back. The expression may contain any operators that 
the source language supports. 

2. Data S t ruc tu re  Manager:  This primitive takes care of all memory accesses and 
memory management. This primitive is also responsible for setting up and updating 
the data structures used in the software. 

3. Repetitive S t ruc tu re  Controller: This primitive controls loops in imperative lan- 
guages, and streams or set generators in functional languages. For loops in Pascal, 
say, given the loop count, exit condition, and the timing of the loop body, it can give 
the total execution time of the loop. The repetitive structure controller will try to 
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find the best way to execute the structure, especially when a lot of parallelism may 
be specified. 

4. Conditional Selector: This primitive takes care of all conditional statements in the 
source language, like if-then-else and case statements. This primitive contains the 
timing characteristics of the machine in choosing alternatives. 

5. Communication Manager: This primitive is responsible for all the communication 
among processes, whether they are by message passing or through monitoring. 

6. 1/0 Manager: This primitive is responsible for all input and output activities of the 
machine. 

7. Procedure Calling Manager:  This primitive controls all procedure calls, parameter 
and result passing, and context switching in the software. 

8. Process  Scheduler: Schedule all ready processes to be executed subject to resource 
constraints. Different operating systems might use different algorithms in scheduling 
their processes. These scheduling differences would be reflected in this primitive. 

In order to model the hardware as a set of virtual machine primitives, we have to 
have a hardware simulation system that will allow us to model and measure the timing 
characteristics of the modeled machine. This system should allow the user to build his 
model of the hardware component easily and generate test cases for measurement purposes. 
The system should also have an automated data collecting feature so that data generated in 
the measurement can be used automatically to generate the set of virtual machine primitives 
necessary for the modeling process. 

5.3.3 Execution Modeling 

In projecting the performance of concurrent systems, the functional results are not required. 
Rather, performance measures such as execution time, resource usage patterns, response 
times, throughput, etc. are of interest. Therefore, the software does not have to be executed 
instruction by instruction. The system must only do enough to keep track of resource usage 
and the impact of the usage on elapsed time. 

The execution unit of the testbed takes in two pieces of information: 

0 a DAG from the software modeling subsystem with all precedence relationships among 
the nodes, and 

0 the set of virtual machine primitives as given by the hardware modeling subsystem 
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The nodes in the DAG are then interpreted by the virtual machine primitives into multi- 
resource, multi-stage tasks. Now, the execution can be viewed as a scheduling problem: 
schedule the set of tasks subject to the precedence relationship given by the DAG and also 
the physical resource constraints of the modeled machine. The execution*unit has to take 
into account the possible resource conflicts among tasks. A Gannt chart can be used to 
display the schedule as shown in Figure 49. 

Task scheduling, taking precedence relationships and physical resource constraints into 
account, can proceed in many possible ways. However, conventional scheduling methods for 
multi-resource, multi-stage tasks subject to resource constraint are usually NP-complete. 
Therefore, we have to pursue other approximations which can provide fast turnaround time 
in modeling the execution. 

Recently, queueing network models have been used successfully in modeling computer 
systems. Due to the computational efficient mean value analysis of the queueing network 
model, performance measures for computer systems can be obtained easily using this model. 
However, queueing network models, by themselves, cannot be used to model concurrency. 
Thus, these models cannot be used directly to model the execution of the task systems. In 
order to implement this approach to performance projection, new ways to apply queueing 
network models to analyze DAG’S are needed to obtain approximations to the desired 
performance estimations. 

5.3.4 Summary 

Three important future research areas have been identified in order to implement an intermediate- 
language based modeling and analysis system. 

0 software analysis of concurrent software, 

0 modeling of concurrent machines as a set of virtual machine primitives, and 

0 queueing network models applied to model the execution of a set of tasks with prece- 
dence constraints. 

In software analysis, a compiler system that is able to translate software written in 
different source languages into the graphical intermediate form is required. It should be able 
to model the effects of optimizing compilers and manage explicitly identified concurrency 
in the software. 

In hardware modeling, a hardware simulation system is required for the user to model 
components of the concurrent system and to obtain timing characteristics. An automated 
data collecting feature is also desired to analyze the measurement data collected and to 
generate the virtual machine primitives automatically. 
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In execution modeling, we are investigating the possibility of using queueing network 
models to model the execution of task systems with precedence constraints. This method 
allows us to have a computationally efficient system to obtain approximate performance 
measures of concurrent systems in a fast turnaround environment. 

. 

6 Conclusions and Plans 

Based on the work done in the background studies and review of the strengths and weak- 
nesses of the various potential approaches to the Testbed and Emulation Tools identified in 
the last chapter, the third approach, Intermediate Level Analysis, is recommended as the 
potentially the most cost-effective approach for the development of Testbed and Emulation 
Tools. The Intermediate Level Analysis approach has the benefit of being software based, 
thus being easily ported to various execution environments (custom hardware does not have 
this capability). Intermediate Level Analysis represents a balance between very high-level 
approximations, which cannot easily be verified, and very low-level simulation, which can- 
not easily be conducted on very large problems. By working a t  an intermediate level, the 
application needs only be mapped part way in terms of detail. Similarly, the hardware only 
needs to be generalized part way from its most detailed representations. In both cases, we 
expect that a better understanding of the hardware and software models will be possible at  
the Intermediate Level. 

Figure 50 shows another version of the major components of such a system. The program 
to be studied must undergo some sort of software analysis. The Directed Acyclic Graph 
produced is typical of a high-level graph representation of the program which might be 
produced (at least at a machine level) within a typical compiler. The nodes in the graph 
represent that portion of a program that can be executed sequentially (using only one 
portion of the hardware resource a t  a time). This form of software representation should 
allow various compiler optimizations to be represented within the same form so that various 
representations of the same software might be able to be considered. 

A queueing network model form of hardware model is recommended. Here the various 
components of the hardware system are represented as the higher-level functional units, such 
as the virtual functional units described in section 5.3.2, where each of the functional units 
may have a queue of work pending. This network would represent the hardware with some 
operating system influence, especially at the resource management level. The Performance 
Prediction system then must simulate the execution of the high-level Directed Acyclic Graph 
on the high-level, virtual-component based hardware queueing network model. 

The most immediate problem in the implementation of this approach is the Performance 
Prediction portion of this system. Queueing network models cannot handle concurrency. 
The analysis of Markov Chains is extremely complex (combinatorial complexity) for large 
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Figure 51: Constant Device Utilization Assumption 

problems, and would be computationally intractable, even for an Intermediate Level Anal- 
ysis, such as this. Therefore, a new approach to Performance Prediction is needed. 

6.1 New Approach to Performance Prediction 

We have proposed a new approach to the Performance Prediction. This approach involves 
an ideal algorithm and then application of that basic ideal algorithm in more practical 
settings. 

6.1.1 Ideal Algorithm 

First assume that the utilization of each service center in the hardware model is constant 
throughout the entire execution of the Directed Acyclic Graph. This assumption is shown 
graphically in Figure 51. 

If this assumption holds, then the time required to complete execution of the task system 
represented by the DAG can be determined by the following algorithm: 

1. Guess the initial utilization, Uo, for each device. 

2. Compute the task residence times using mean value analysis. 

Ti  = f(Ui-1) 

3. Find the task system completion time, Ci. 

4. Compute a new set of estimates of Utilization for each device. 

Ui = d c i )  

5. Iterate steps 2, 3, and 4 until all Ui’s converge. 
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6.1.2 Realistic Algorithm 

As should be obvious, the basic assumption above is not realistic in an actual system. 
For example, as Figure 52 shows, device utilization is not uniform at all over the time 
of execution of a DAG. However, the assumption can hold incrementally. That is, we 
can choose regions (sometimes arbitrarily small) such that within the elapsed time of the 
evaluation of that portion of a DAG, the assumption is quite valid. Therefore, a general 
execution profile of a DAG can be used to estimate device utilizations. The entire execution 
is then divided into intervals of constant utilization. Task Residence Times can then be 
computed using utilization values in the execution intervals utilizing the ideal algorithm 
already described. The overall Task Completion Time is an accumulation of the times in 
the various intervals. 
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The complexity of this algorithm is projected to be O ( N 3 ) ,  considerably better than 
the combinatorial complexity of Markov Analyses. This approach still needs a considerable 
amount of research before it can be applied. The exact constraints under which it can be 
applied must be determined. These constraints must then be mapped back to determine 
the types of software applications and hardware structures that can make use of this form 
of Intermediate Level Analysis. A general experimental method to the validation of this 
approach to analysis is proposed in Figure 53. Specifically, establish the capability to 
both simulate and conduct Intermediate Level Analysis from the same DAG and queueing 
network model. Then the results of this new approach can be compared and contrasted with 
the specific operations actually performed during a simulation, leading to a much better 
understanding of the potential power of this proposed approach. 
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